Products of Finitely Many Resolvents of Maximal Monotone Mappings in Reflexive Banach Spaces

نویسنده

  • Shoham Sabach
چکیده

We propose two algorithms for finding (common) zeroes of finitely many maximal monotone mappings in reflexive Banach spaces. These algorithms are based on the Bregman distance related to a well-chosen convex function and improves previous results. Finally, we mention two applications of our algorithms for solving equilibrium problems and convex feasibility problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces

Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...

متن کامل

A SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS

We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...

متن کامل

Iterative Convergence of Resolvents of Maximal Monotone Operators Perturbed by the Duality Map in Banach Spaces

For a maximal monotone operator T in a Banach space an iterative solution of 0 ∈ Tx has been found through weak and strong convergence of resolvents of these operators. Identity mapping in the definition of resolvents has been replaced by the duality mapping. Solution after finite steps has also been established.

متن کامل

Strong Convergence of Monotone Hybrid Method for Maximal Monotone Operators and Hemirelatively Nonexpansive Mappings

We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Ban...

متن کامل

Existence and Perturbation Theorems for Nonlinear Maximal Monotone Operators in Banach Spaces by Felix E. Browder

Such a set G is said to be maximal monotone if it is maximal among monotone sets in the sense of set inclusion, and a mapping T is said to be maximal monotone if its graph G(T) is a maximal monotone set. For reflexive Banach spaces X and mappings T with D(T)~X, the basic result obtained independently by Browder [2] and Minty [20] states that if T is a monotone operator from D(T)=X to X* which i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011